Arc Length and Surface Area
an example
> | with(plots): |
Warning, the name changecoords has been redefined
> | curve1:=plot([t,t^2-2*t+2,t=1..3],thickness=3,labels=[x,y]): |
> | axesOfRev:=plot([0,t,t=-1..6],thickness=3,color=blue,linestyle=DASH): |
> | display(curve1,axesOfRev); |
> | f:=x^2-2*x+2; |
> | fprime:=diff(f,x); |
Below we compute the arc length for the curve above in red.
> | Int(sqrt(1+fprime^2),x=1..3); |
> | value(%); |
> | evalf(%); |
Below we picture and compute the surface area of the surface formed by revolving the arc in red shown above about the blue dashed line (y-axis).
> | implicitplot3d(x^2+z^2=(1+sqrt(y-1))^2,x=-3..3,y=1..5,z=-3..3,axes=boxed,numpoints=2500); |
> | Int(2*Pi*(1+sqrt(y-1))*sqrt(1+1/(4*y-4)),y=1..5); |
> | value(%); |
> | evalf(%); |
> | Int(2*Pi*x*sqrt(1+(2*x-2)^2),x=1..3); |
> | value(%); |
> | evalf(%); |
The integrations below appear to be done numerically.
> | int(2*Pi*(1+sqrt(y-1))*sqrt(1+1/(4*y-4)),y=1.0..5.0); |
> | int(2*Pi*x*sqrt(1+(2*x-2)^2),x=1.0..3.0); |
> |